Roll No.

Total Printed Pages - 4

F-3853

M.A./M.Sc. (Previous) Examination, 2022 MATHEMATICS Paper Third (Topology)

Time : Three Hours]

[Maximum Marks : 100

Note : All questions are compulsory. Attempt any two parts from each question. All questions carry equal marks.

Unit - 1

- 1. (a) Define countable set. Prove that a finite product of countable sets is countable.
 - (b) Define accumulation point. Prove that a subset
 A of a topological space (X, τ) is closed if and only if A contains all its limit points.
 - P.T.O.

(c) Define base for a topology. Let (X, τ) be a topological space and $\beta c \tau$. Then prove that β is a base for τ if and only if for any $x \in X$ and any open set G containing x, there exists $B \in \beta$ such that $x \in B$ and $B \subset G$.

Unit-II

- 2. (a) Define continuous function in topological space. Let X and Y be topological spaces. Show that a mapping $f : X \rightarrow Y$ is continuous if only if the inverse image under *f* of every open set in Y is open in X.
 - (b) State and prove Urysohn's Lemma.
 - (c) Define Normal space. Show that a closed.Subspace of a Normal space is normal.

Unit-III

- 3. (a) Show that a subspace of a real line is connected if and only if it is an interval.
 - (b) Define Locally compact space. Show that any
- F- 3853

[3]

- open subspace of a locally compact space is locally compact.
- State and prove the Stone-Cech compactification (C) theorem.

Unit-IV

- Define projection map. Prove that the projection 4. (a) functions are open.
 - (b) Show that the product space $X_1 \times X_2$ are connected iff both X_1 and X_2 are connected.
 - Prove that every second countable normal space (C) is metrizable.

Unit-V

- 5. (a) Show that a filter *F* on a set *X* is an ultrafilter if and only if F contains all those subsets of X which intersect every member of F.
 - Define covering map. Prove that a covering map (b) is a local homeomorphism.

- [4]
- (c) Let (X, τ) be a topological space and $Y \subset X$. Then a point $x_n \in X$ is a limit point of Y if and only if a net in Y-{ x_0 } converges to { x_0 }.

F-3853